Non-Stimulated, Agonist-Stimulated and Store-Operated Ca2+ Influx in MDA-MB-468 Breast Cancer Cells and the Effect of EGF-Induced EMT on Calcium Entry
نویسندگان
چکیده
In addition to their well-defined roles in replenishing depleted endoplasmic reticulum (ER) Ca(2+) reserves, molecular components of the store-operated Ca(2+) entry pathway regulate breast cancer metastasis. A process implicated in cancer metastasis that describes the conversion to a more invasive phenotype is epithelial-mesenchymal transition (EMT). In this study we show that EGF-induced EMT in MDA-MB-468 breast cancer cells is associated with a reduction in agonist-stimulated and store-operated Ca(2+) influx, and that MDA-MB-468 cells prior to EMT induction have a high level of non-stimulated Ca(2+) influx. The potential roles for specific Ca(2+) channels in these pathways were assessed by siRNA-mediated silencing of ORAI1 and transient receptor potential canonical type 1 (TRPC1) channels in MDA-MB-468 breast cancer cells. Non-stimulated, agonist-stimulated and store-operated Ca(2+) influx were significantly inhibited with ORAI1 silencing. TRPC1 knockdown attenuated non-stimulated Ca(2+) influx in a manner dependent on Ca(2+) influx via ORAI1. TRPC1 silencing was also associated with reduced ERK1/2 phosphorylation and changes in the rate of Ca(2+) release from the ER associated with the inhibition of the sarco/endoplasmic reticulum Ca(2+)-ATPase (time to peak [Ca(2+)](CYT) = 188.7 ± 34.6 s (TRPC1 siRNA) versus 124.0 ± 9.5 s (non-targeting siRNA); P<0.05). These studies indicate that EMT in MDA-MB-468 breast cancer cells is associated with a pronounced remodeling of Ca(2+) influx, which may be due to altered ORAI1 and/or TRPC1 channel function. Our findings also suggest that TRPC1 channels in MDA-MB-468 cells contribute to ORAI1-mediated Ca(2+) influx in non-stimulated cells.
منابع مشابه
Assessment of CXC ligand 12-mediated calcium signalling and its regulators in basal-like breast cancer cells
CXC ligand (L)12 is a chemokine implicated in the migration, invasion and metastasis of cancer cells via interaction with its receptors CXC chemokine receptor (CXCR)4 and CXCR7. In the present study, CXCL12-mediated Ca2+ signalling was compared with two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which demonstrate distinct metastatic potential. CXCL12 treatment induced Ca2+ ...
متن کاملSTIM1 plays an important role in TGF-β-induced suppression of breast cancer cell proliferation
Store-operated calcium entry (SOCE) signaling is involved in cancer progression. Stromal interaction molecule 1 (STIM1) triggers store-operated calcium channels to induce SOCE. Transforming growth factor-β (TGF-β) influences a wide range of cellular behaviors, including cell proliferation. However, little is known about the relationship between calcium signaling and TGF-β signaling in cancer ce...
متن کاملEGF induces epithelial-mesenchymal transition through phospho-Smad2/3-Snail signaling pathway in breast cancer cells
Epithelial-mesenchymal transition (EMT) can contribute to tumor invasion, metastasis, and resistance to chemotherapy or hormone therapy. EMT may be induced by a variety of growth factors, such as epidermal growth factor (EGF). Most studies regarding EMT have focused on TGF-β-Smads signaling. The mechanism of EGF-induced EMT via activation of the Smad2/3 in breast cancer cells, MCF-7 and MDA-MB-...
متن کاملCell Kinetic Study of Tamoxifen Treated MCF-7 and MDA-MB 468 Breast Cancer Cell Lines
Apoptosis could be a major mechanism of antitumor effect of tamoxifen. Therefore this study is designed to characterize the kinetic behavior of tamoxifen-induced apoptosis in the estrogen receptor positive (ER+) and negative (ER-) cell lines, MCF-7 and MDA-MB-468. Frequency of cell death was examined by trypan blue and acridine orange staining. Annexin V-Fluorescein/PI was used in flow cytometr...
متن کاملSynthesis and determination of apoptotic effect of calcium nanofluoride on breast cancer cells
Background & objectives: Breast cancer is one of the most common diseases in women around the world and has many causes. Calcium regulation plays an essential role in cancer cell tumorigenesis and cell proliferation, migration, metastasis and resistance to apoptosis. Nanocalcium inhibits tumor by changing the pH of cancer cells. In this study, calcium nanofluoride was synthesized and evaluate...
متن کامل